2.1 Identifiers

An identifier is a name given to a variable, function, class or module. Identifiers may be
one or more characters in the following format:

¢ [dentifiers can be a combination of letters in lowercase (a to z) or uppercase (A to Z)
or digits (0t 9) or an underscore (_). Names like myCountry, other 1 and good_

motning, all are valid examples. A Python identifier can begin with an alphabet
(A-Zanda-zand)

* An identifier cannot start with a digit but is allowed everywhere else. Tplus is
invalid, but plusl is perfectly fine.

2.2 Keywurds

Keywords are a list of reserved words that have predefined meaning. Keywords are spe-
cial vocabulary and cannot be used by programmers as identifiers for variables, functions,
constants or with any identifier name. Attempting to use a keyword as an identifier name
will cause an error. The following TABLE 2.1 shows the Python keywords.

TABLE 2.1

List of Keywords in Python
and as not
assert finally — or
break for pass
class from nonlocal
continue global raise
def if return
del import try

elif in while
else is with
except lambda yield
False True None

2.3 Statements and Expressinns

A statement is an instruction that the Python interpreter can execute. Python program
consists of a sequence of statements. Statements are everything that can make up a line (or
several lines) of Python code. For example, z = 1 is an assignment statement.

Expression is an arrangement of values and operators which are evaluated to make a
new value. Expressions are statements as well. A value is the representation of some entity
like a letter or a number that can be manipulated by a program. A single value >>> 20 or
a single variable >>> z or a combination of variable, operator and value >>> z + 20 are all
examples of expressions. An expression, when used in interactive mode is evaluated by
the interpreter and result is displayed instantly. For example,

w842
10

But the same expression when used in Python program does not show any output alto-
gether. You need to explicitly print the result.

2.4 Variables

Wariable is a named placeholder to hold any type of data which the program can use to
assign and modify during the course of execution. In Python, there is no need to declare
a variable explicitly by specifying whether the variable is an integer or a Hoat or any other
type. To define a new variable in Python, we simply assign a value to g name. If a need for vari-
able arises you need to think of a variable name based on the rules mentioned in the fol-
lowing subsection and use it in the program.

2.4.1 Legal Variable Names

Follow the below-mentioned rules for creating legal variable names in Python.

* Variable names can consist of any number of letters, underscores and digits.
* Variable should not start with a number.
+ Python Keywords are not allowed as variable names.

* Variable names are case-sensitive. For example, computer and Computer are dif-
ferent variables.

Also, follow these guidelines while naming a variable, as having a consistent naming con-
vention helps in avoiding confusion and can reduce programming errors.

* Python variables use lowercase letters with words separated by underscores as
necessary to improve readability, like this whats_up, how_are_you. Although this
is not strictly enforced, it is considered a best practice to adhere to this comvention.

* Avoid naming a variable where the first character is an underscore. While this
is legal in Python, it can limit the interoperability of your code with applications
built by using other programming languages.

#+ Ensure variable names are descriptive and clear enough. This allows other pro-
grammers to have an idea about what the variable is representing.

2.4.2 Assigning Values to Variables

The general format for assigning values to variables is as follows:
variable_name = expression

The equal sign (=) also known as simple assignment operator is used to assign values to
variables. In the general format, the operand to the left of the = operator is the name of
the variable and the operand to the right of the = operator is the expression which can be
a value or any code snippet that results in a value. That value is stored in the variable on
the execution of the assignment statement. Assignment operator should not be confused
with the = used in algebra to denote equality. For example, enter the code shown below in
interactive mode and observe the results.

1. === number =100
2. =z miles =1000.0

3. »=> name ="Python”
4, === number

100
5. === miles

10000

f. >=> name
"Python'

In @ integer type value is assigned to a variable mumber, in @ foat type value has been
assigned to variable miles and in & string type value is assigned to variable name. &, & and
i® prints the value assigned to these variables.

In Python, not only the value of a variable may change during program execution but
also the type of data that is assigned. You can assign an integer value to a variable, use it as
an integer for a while and then assign a string to the variable. A new assignment overrides
any previous assignments. For example,

1. == century = 100
2. »== century
100
3. == century = "hundred"”
4. »>> century
"hundred’

In @ an integer value is assigned to century variable and then in @ you are assigning a string
value to cenfury variable. Different values are printed in each case as seen in @ and .

Python allows you to assign a single value to several variables simultanecusly. For
example,

lLs>a=b=c=l
2.om==a
1
3 ===b
1
4 ==mC
1

An integer value is assigned to variables a, b and ¢ simultaneously @. Values for each of
these variables are displayed as shown in @, @ and @&.

2.5 Operators

Operators are symbols, such as +, — =, >, and <, that perform certain mathematical or
logical operation to manipulate data values and produce a result based on some rules. An
operator manipulates the data values called operands.

Consider the expression,

=4+ 6

where 4 and 6 are operands and + is the operator.
Python language supports a wide range of operators. They are

1. Arithmetic Operators
2. Assignment Operators
3. Comparison Operators
4. Logical Operators

5. Bitwise Operators

2.5.1 Arithmetic Operators

Arithmetic operators are used to execute arithmetic operations such as addition, sub-
traction, division, multiplication etc. The following TABLE 2.2 shows all the arithmetic

operators.

TABLE 2.2

List of Arithmetic Operators

Operator Operator Name Description Evumplz

- Addition operator Adds two operands, producing their sum. P+q=>5

- Subtraction oparator Subtracts the two operands, producding their p-g=-1
differance.

. Multiplication operator ~ Produces the product of the operands. ptag=6

! Division operator Produces the quotient of its operands where the g/ p=135
left operand is the dividend and the right cperand
is the divisor.

% Modulus operator Diivides left hand operand by right hand operand q%p=1
and returns a remainder.

- Exponent operator Paerforms exponential (powaer) calculation on F*g=8
operators.

’f Floor division operator ~ Keturns the integral part of the quotient. % /2= 4and

90/ /20=40

Note: The value of p is 2 and qis 3.
For example,

1. === 10+35
45

2, == —10+35
25

3. === 472
8

4, ===4%2
16

5. s 45/10
45

6. >3 45//10.0
40

7. mmm 2025910
5

8. >3 2025//10

202

Above code illustrates various arithmetic operations T—E.

2.5.2 Assignment Operators

Assignment operators are used for assigning the values generated after evaluating the
right operand to the left operand. Assignment operation always works from right to left.
Assignment operators are either simple assignment operator or compound assignment
operators. Simple assignment is done with the equal sign (=) and simply assigns the value
of its right operand to the variable on the left. For example,

1 =>x=5
ee=x=x+1
3 mEmx

6

In @ you assign an integer value of 5 to variable x. In @ an integer value of 1 is added to the
variable x on the right side and the value 6 after the evaluation is assigned to the variable x.
The latest value stored in variable x is displayed in 3.

Compound assignment operators support shorthand notation for aveiding the repetition
of the left-side variable on the right side. Compound assignment operators combine assign-
ment operator with another operator with = being placed at the end of the original operator.

For example, the statement

s> x=x+1
can be written in a compactly form as shown below.
= +=1

If you try to update a variable which doesn't contain any value, you get an error.

Lesez=z+1
MameError: name 'z’ is not defined

Trying to update variable z which doesn't contain any value results in an error because
Python evaluates the right side before it assigns a value to z @

1l z2=z2=0
2 ommx=z+1

Before you can update a variable @, you have to assign a value to it @.

The following TABLE 2.3 shows all the assignment operators.

TABLE 1.3

List of Assignment Operators

Operator Operator Name Drescription Example

= Assignment Assigns values from right side operands to left = p + q assigns value

side operand. ofp+gtoz

+= Addition Adds the value of right operand to the left Z 4= p is equivalent to
Assignment operand and assigns the result to left operand. E=Z4+p

-—= Subtraction Subtracts the value of right operand from the left z —= p is equivalent to
Assignment operand and assigns the result to left operand. E=Z-P

= Multiplication Multiplies the value of right operand with the laft z *= pis equivalent to
Assignment operand and assigns the result to left operand. r=z%p

= Division Divides the value of right operand with the left # /= p is equivalent to
Assignment operand and assigns the result to left operand. z=z/p

= Exponentiation Evaluates to the result of raising the first operand ~ #**= p is equivalent to
Assignment to the power of the second operand. r=z%p

ff= Floor Division Produces the integral part of the quotient of its z (= pis equivalent to
Assignment operands whera the left operand is the dividend z==z//p

and the right operand is the divisor,

%= FEemainder Computss the remainder after division and z %= pis equivalent to

Assignment assigns the value to the laft operand. z=z%p

For example,

[

n

e p=10
s g=12
LsEmqA=p
|

22

s qt=p
. mEm

220

Te=qf=p

11.
12.

13.
14.

. »3mq

220

| 22 q = p
10.

3> q
20

=== q™=p
|
1024.0
==q/f=p
3> q

102.0

